Меню Рубрики

Мышьяк: история открытия элемента. История открытия Промышленное производство и применение

Некоторые, умершие в Средние века от холеры, скончались не от нее. Симптомы болезни схожи с проявлениями отравления мышьяком .

Прознав это, средневековые дельцы стали предлагать триоксид элемента в качестве яда. Вещество . Смертельная доза – всего 60 граммов.

Их разбивали на порции, давая в течение нескольких недель. В итоге, никто не подозревал, что человек скончался не от холеры.

Вкус мышьяка не чувствуется в малых дозах, будучи, к примеру, в еде, или напитках. В современных реалиях, конечно, холеры нет.

Людям опасаться мышьяка не приходиться. Бояться, скорее, нужно мышам. Токсичное вещество – один из видов отравы для грызунов.

В их честь, кстати, элемент и назван. Слово «мышьяк» бытует лишь в русскоязычных странах. Официальное название вещества – арсеникум.

Обозначение в – As. Порядковый номер – 33. Исходя из него, можно предположить полный список свойств мышьяка. Но, не будем предполагать. Изучим вопрос наверняка.

Свойства мышьяка

Латинское название элемента переводится, как «сильный». Видимо, имеется в виду влияние вещества на организм.

При интоксикации начинается рвота, расстраивается пищеварение, крутит живот и частично блокируется работа нервной системы. не из слабых.

Отравление наступает от любой из аллотропных форм вещества. Аллтропия – это существование различных по строению и свойствам проявлений одного и того же элемента . Мышьяк наиболее устойчив в металлической форме.

Ромбоэдрические серо-стального цвета хрупки. Агрегаты имеют характерный металлический , но от контакта с влажным воздухом, тускнеют.

Мышьяк – металл , чья плотность равна почти 6-ти граммам на кубический сантиметр. У остальных форм элемента показатель меньше.

На втором месте аморфный мышьяк. Характеристика элемента : — почти черный цвет.

Плотность такой формы равна 4,7 граммам на кубический сантиметр. Внешне материал напоминает .

Привычное для обывателей состояние мышьяка – желтое. Кубическая кристаллизация неустойчива, переходит в аморфную при нагреве до 280-ти градусов Цельсия, или под действием простого света.

Поэтому, желтые мягкие, как , в темноте. Несмотря на окрас, агрегаты прозрачны.

Из ряда модификаций элемента видно, что металлом он является лишь наполовину. Очевидного ответа на вопрос: — «Мышьяк металл, или неметалл », нет.

Подтверждением служат химические реакции. 33-ий элемент является кислотообразующим. Однако, оказываясь в кислоте сам, не дает .

Металлы поступают иначе. В случае же мышьяка, не получаются даже при контакте с , одной из самых сильных .

Солеобразные соединения «рождаются» в ходе реакций мышьяка с активными металлами.

Имеются в виду окислители. 33-е вещество взаимодействует только с ними. Если у партнера нет выраженных окислительных свойств, взаимодействие не состоится.

Это касается даже и щелочей. То есть, мышьяк – химический элемент довольно инертный. Как же тогда его добыть, если список реакций весьма ограничен?

Добыча мышьяка

Добывают мышьяк попутно другим металлам. Отделяют их, остается 33-е вещество.

В природе существуют соединения мышьяка с другими элементами . Из них-то и извлекают 33-ий металл.

Процесс выгодный, поскольку вкупе с мышьяком часто идут , , и .

Он встречается в зернистых массах, либо кубических кристаллах оловянного цвета. Иногда, присутствует желтый отлив.

Соединение мышьяка и металла феррум имеет «собрата», в котором вместо 33-го вещества стоит . Это обычный пирит золотистого цвета.

Агрегаты похожи на арсеноверсию, но служить рудой мышьяка не могут, хотя, в виде примеси тоже содержат.

Мышьяк в обычном , кстати, тоже бывает, но, опять же, в качестве примеси.

Количество элемента на тонну столь мало, но не имеет смысла даже побочная добыча.

Если равномерно распределить мировые запасы мышьяка в земной коре, получится всего 5 граммов на тонну.

Так что, элемент не из распространенных, по количеству сравним с , , .

Если же смотреть на металлы, с которыми мышьяк образует минералы, то это не только , но и с кобальтом и никелем.

Общее число минералов 33-го элемента достигает 200-от. Встречается и самородная форма вещества.

Ее наличие объясняется химической инертностью мышьяка. Формируясь рядом с элементами, с коими не предусмотрены реакции, герой остается в гордом одиночестве.

При этом, зачастую, получаются игольчатые, или кубические агрегаты. Обычно, они срастаются между собой.

Применение мышьяка

Элемент мышьяк относится к двойственным не только проявляя свойства, как металла, так и не металла.

Двойственно и восприятие элемента человечеством. В Европе 33-е вещество всегда считали ядом.

В в 1733-ем году даже издали указ, запрещающий продажу и приобретение мышьяка.

В Азии же «отрава» уже 2000 лет используется медиками в лечении псориаза и сифилиса.

Врачи современного доказали, что 33-ий элемент атакует белки, провоцирующие онкологию.

В 20-ом веке на сторону азиатов встали и некоторые европейские врачи. В 1906-ом году, к примеру, западные фармацевты изобрели препарат сальварсан.

Он стал первым в официальной медицине, применялся против ряда инфекционных болезней.

Правда, к препарату, как и любому постоянному приему мышьяка в малых дозах, вырабатывается иммунитет.

Эффективны 1-2 курса препарата. Если иммунитет сформировался, люди могут принять смертельную дозу элемента и остаться живыми.

Кроме медиков 33-им элементом заинтересовались металлурги, став добавлять в для производства дроби.

Она делается на основе , который входит в тяжелые металлы. Мышьяк увеличивает свинца и позволяет его брызгам при отливке принимать сферическую форму. Она правильная, что повышает качество дроби.

Мышьяк можно найти и в термометрах, точнее их . Оно зовется венским, замешивается с оксидом 33-го вещества.

Соединение служит осветлителем. Мышьяк применяли и стеклодувы древности, но, в качестве матирующей добавки.

Непрозрачным стекло становится при внушительной примеси токсичного элемента.

Соблюдая пропорции, многие стеклодувы заболевали и умирали раньше времени.

И специалисты кожевенного производства пользуются сульфидами мышьяка .

Элемент главной подгруппы 5-ой группы таблицы Менделеева входит в состав некоторых красок. В кожевенной же промышленности арсеникум помогает удалять волосы с .

Цена мышьяка

Чистый мышьяк, чаще всего, предлагают в металлической форме. Цены устанавливают за килограмм, или тонну.

1000 граммов стоит около 70-ти рублей. Для металлургов предлагают готовые , к примеру, мышьяк с медью.

В этом случае за кило берут уже 1500-1900 рублей. Килограммами продают и мышьяковистый ангидрит.

Его используют в качестве кожного лекарства. Средство некротическое, то есть омертвляет пораженный участок, убивая не только возбудителя болезни, но и сами клетки. Метод радикальный, зато, эффективный.

МЫШЬЯК (возможно, от слова "мышь"; в Древней Руси возникновение такого назв. могло быть связано с применением соединений мышьяка для истребления мышей и крыс; лат. Arsenicura, от греч. arsen-сильный, мощный) As, хим. элемент V гр. периодич. системы, ат. н. 33, ат. м. 74,9216. В природе один стабильный изотоп с маc. ч.75. Поперечное сечение захвата тепловых нейтронов 4,2 . 10 -28 м -2 . Конфигурация внеш. электронной оболочки 4s 2 4p 3 ; степени окисления - 3, + 3 и +5; энергии ионизации при последоват. переходе от As 0 к As 5+ соотв. равны 9,815, 18,62, 28,34, 50,1, 62,6 эВ; электроотрицательность по Полингу 2,1; атомный радиус 0,148 нм, ковалентный радиус 0,122 нм. ионные радиусы (в скобках указаны координац. числа) As 3+ 0,072 нм (6), As 5+ 0,047 нм (4), 0,060 нм (6), As 3- 0,191 нм.

Содержание в земной коре 1,7 . 10 -4 % по массе. Относится к рассеянным элементам , однако образует св. 160 собств. минералов . Редко встречается в самородном виде. Наиб. распространенные минералы , имеющие пром. значение,-арсенопирит FeAsS, реальгар As 4 S 4 и аурипигмент As 2 S 3 . Практич. значение имеют мышьяковые руды , содержащие не менее 2-5% мышьяка. В богатых месторождениях содержание мышьяка в руде достигает 25-35%. Значит. кол-ва мышьяка концентрируются в большинстве полиметаллич. руд цветных металлов . Прежде всего он генетически ассоциируется с рудами W, Sn, Pb, Sb, Zn, Cu, Ni и Со. Почти со всеми этими металлами мышьяк образует минералы-простые и сложные арсениды , напр. сперршшт PbAs 2 , шмалътин CoAs 2 , теннатит 3Cu 2 S . As 2 S 3 . Минералы мышьяка также встречаются в месторождениях благородных металлов-Аu и Ag. Осн. массу мышьяка и его соед. (более 90%) получают при переработке полиметаллич. руд . Пром. месторождения мышьяка в мире многочисленны, а запасы практически неограниченны.

Свойства. Мышьяк существует в неск. аллотропич. формах, из к-рых наиб. устойчив серый , т. наз. металлический, мышьяк (a-As) с ромбоэдрич. кристаллич. решетк ой, а = 0,4135 нм, a = 54,13°, z = 2, пространств. группа R3т (в гексагон. установке а = 0,376 нм, с = 1,0548 нм), плотн. 5,74 г/см 3 . При очень быстрой конденсации паров мышьяка на пов-сти, охлаждаемой жидким N 2 , получают прозрачные, мягкие как воск кристаллы желтого мышьяка (решетка кубич.) с плотн. ~2,0 г/см 3 . По св-вам он аналогичен белому Р, но значительно менее устойчив. При нагр. и на свету желтый мышьяк быстро переходит в серый ; DH 0 перехода 14,63 кДж/моль . Известны также нестабильные аморфные формы мышьяка, напр. черный мышьяк с плотн. ~4,7 г/см 3 , образующийся при конденсации паров мышьяка в токе Н 2 . Выше 270 °С черный мышьяк переходит в серый ; DH 0 перехода 4,18 кДж/моль . Компактный (плавленый) серый мышьяк имеет вид серебристого крупнокристал-лич. металла ; тройная точка 817°С при давлении пара 3,7 МПа; т.возг.- 615°С; плотн. жидкого 5,24 г/см 3 (817°С); С 0 p 25,05 Дж/(моль . К); DH 0 пл 28 кДж/моль , DH 0 возг 150 кДж/моль (для As 4); S 0 298 35,6 ДжДмоль К); ур-ние температурной зависимости давления пара : lgp (мм рт. ст.) = 11,160 - 7357/Т (623 -1090 К); температурный коэф. линейного расширения 4 . 10 -6 К -1 (293-573 К); t крит 1400 °С, p крит 22,0 МПа, d рит 2,65 г/см 3 . Пар мышьяка бесцветен, состоит до 800 °С из молекул As 4 , выше 1700°С из As 2 , в интервале 800-1700 °С из смеси As 2 и As 4 . Серый мышьяк очень хрупок, разрушается по спайностям; твердость по Бринеллю ~ 1500 МПа, твердость по Моосу 3,5. Мышьяк диамагнитен, магнийная восприимчивость - 5,5 . 10 -6 ; обладает метал-лич. проводимостью; р 3,3 . 10 -5 Ом. см, температурный коэф. р 3,9 . 10 -3 К -1 (273-373 К).

М ышьяк химически активен. На воздухе при нормальной т-ре даже компактный (плавленый) металлический мышьяк легко окисляется, при нагр. порошкообразный мышьяк воспламеняется и горит голубым пламенем с образованием оксида As 2 O 3 . Известен также термически менее устойчивый нелетучий оксид As 2 O 5 (см. Мышьяка оксиды). Разб. HNO 3 окисляет мышьяк до ортомышьяковистой к-ты H 3 AsO 3 , конц. НМО 3 -до ортомышьяковой к-ты H 3 AsO 4 . Р-ры щелочей в отсутствие О 2 с мышьяком практически не реагируют. При сплавлении со щелочами образуется арсин AsH 3 (см. Мышьяка гидрид)и арсенаты (III). Металлический мышьяк легко взаимод. с галогенами , давая летучие галогениды AsHal 3 , с F 2 образует также и AsF 5 (см. Мышьяка галогениды). Порошкообразный мышьяк самовоспламеняется в среде F 2 и Сl 2 . С S, Se и Те мышьяк образует соответствующие мышьяка халькогениды . С большинством металлов дает металлич. соед.-арсениды. Галлия арсенид и индия арсенид - важные полупроводниковые соединения. Известны многочисл. мышьякорганические соединения . С Sb мышьяк образует непрерывный ряд твердых р-ров.

Наиб. важным соед. мышьяка посвящены отдельные статьи, ниже приводятся сведения о к-тах мышьяка.

О р т о м ы ш ь я к о в а я к-т а (мышьяковая к-та) Н 3 AsO 4 x х 0,5Н 2 О, бесцв. кристаллы ; т. пл. 36 °С (с разл.); раств. в воде (88% по массе при 20 °С); гигроскопична; в водных р-рах-трехосновная к-та: К а1 = 5,6 . 10 -3 , К а2 =1,7 . 10 -7 , К a3 = 3,0 . 10 -12 ; при нагр. ок. 100 °С теряет воду , превращаясь в пиромышьяковую к-ту H 4 As 2 O 7 , при более высоких т-рах переходит в метамышьяковую к-ту HAsO 3 . Получают окислением As или As 2 O 3 конц. HNO 3 . Применяют для получения As 2 O 5 , арсенатов (V), мышъякорг. соед., как антисептик для древесины . О р т о м ы ш ь я к о в и с т а я к-т а (мышьяковистая к-та) H 3 AsO, существует только в водном р-ре; слабая к-та, К а1 = 8 . 10 -16 (25 °С); получают растворением As 2 O 3 в воде ; промежут. продукт при получении арсенатов (III) и др. соединений.

Получение. Мышъяксодержащие руды подвергают окислит. обжигу и извлекают мышьяк в виде As 2 O 3 . Его возгоняют и получают продукт с чистотой более 98%. Практически все соед. мышьяка в пром-сти производят исходя из As 2 O 3 . Металлический мышьяк также получают из As 2 O 3 восстановлением его углеродсодержащими восстановителями (чаще всего древесным углем). Очищают мышьяк сублимацией . Мышьяк высокой чистоты для синтеза полупроводниковых соед. получают из предварительно очищенных AsH 3 или AsCl 3 хим. осаждением из газовой фазы. Арсин разлагают при 300-400 °С в токе Н 2 или Аr. Хлорид восстанавливают Н 2 высокой чистоты (к-рый очищают диффузией через сплавы Pd). Наиб. чистый мышьяк получают, сочетая дистилляцию и кристаллизацию . Эти процессы проводят при 815-850 °С и давлении 4-6 МПа. Мышьяк для синтеза полупроводниковых соед. не должен содержать примеси (Si, S, О, Си и др.) более 10 -5 -10 -6 % по массе каждого в-ва.

Определение. Наиб. общий способ качеств. обнаружения мышьяка основан на восстановлении его соед. до AsH 3 цинком или Аl в разб. к-тах (соляной или серной); при пропускании образовавшегося AsH 3 через нагретую до 300-350 °С стеклянную трубку, наполненную Н 2 , на ее стенках осаждается мышьяк в виде черно-бурого зеркала, к-рое легко раств. в щелочном р-ре NaClO, в отличие от аналогичного "сурьмяного зеркала". Чувствителен метод Гутцайта, по к-рому выделяющийся (при восстановлении соед. мышьяка) Н 2 со следами AsH 3 пропускают над полоской сухой фильтровальной бумаги , импрегнированной HgCl 2 или, лучше, HgBr 2 ; этот метод можно использовать также и как количественный. Нейтронно-активац. метод обнаружения мышьяка в виде 76 As (T 1/2 26,6 ч) обладает очень высокой чувствительностью (~5 . 10 -12 г); предел обнаружения может достигать 10 -8 -10 -10 % мышьяка.

Количественно мышьяк определяют после отгонки его из солянокислого р-ра в виде AsCl 3 . По методу Ледебура уловленный водой AsCl 3 титруют КВrО 3 в солянокислом р-ре в присут. метилового оранжевого или флуоресцеина . По гипофосфитному методу As(III) восстанавливают до элементарного мышьяка в сильнокислой среде (2As 3+ + 3H 2 PO - 2 + ЗН 2 О ->2As + ЗН 2 РО - 3 + 6Н +); образовавшийся мышьяк отфильтровывают, промывают разб. соляной к-той и р-ром NH 4 Cl и растворяют в избытке известного кол-ва 0,01-0,1 н. р-ра I 2 . Избыток I 2 титруют р-ром H 3 AsO 3 в присут. NaHCO 3 . Гравиметрич. методами мышьяк определяют в виде

Мышьяк - высокотоксичный кумулятивный яд, поражающий нервную систему. Название мышьяка в русском языке связывают с употреблением его соединений для истребления мышей и крыс; латинское название Arsenicum происходит от греческого «арсен» - сильный, мощный.

Исторические сведения. Мышьяк относится к пяти «алхимическим» элементам, открытым в средние века (удивительно, но четыре из них - As, Sb, Bi и P находятся в одной группе периодической таблицы - пятой). В то же время соединения мышьяка были известны с древних времен, их применяли для производства красок и лекарств. Особенно интересно использование мышьяка в металлургии.

Много лет назад когда каменный век сменился бронзовым. Бронза - это сплав меди с оловом. Как полагают историки, первую бронзу отлили в долине Тигра и Евфрата, где-то между 30 и 25 вв. до н.э. В некоторых регионах выплавлялась бронза с особо ценными свойствами - она лучше отливалась и легче ковалась. Как выяснили современные ученые, это был сплав меди, содержащий от 1 до 7% мышьяка и не более 3% олова. Вероятно, поначалу при его выплавке спутали богатую медную руду малахит с продуктами выветривания некоторых тоже зеленых сульфидных медно-мышьяковых минералов. Оценив замечательные свойства сплава, древние умельцы затем уже специально искали мышьяковые минералы. Для поисков использовали свойство таких минералов давать при нагревании специфический чесночный запах. Однако со временем выплавка мышьяковой бронзы прекратилась. Скорее всего это произошло из-за частых отравлений при обжиге мышьяк содержащих минералов.

Конечно, мышьяк был известен в далеком прошлом лишь в виде его минералов. Так, в Древнем Китаем твердый минерал реальгар (сульфид состава As 4 S 4 , реальгар по-арабски означает «рудниковая пыль») использовали для резьбы по камню, однако при нагревании или на свету он «портился», так как превращался в As 2 S 3 . В 4 в. до н.э. Аристотель описал этот минерал под названием «сандарак». В I в. н.э. римский писатель и ученый Плиний Старший, и римский врач и ботаник Диоскорид описали минерал аурипигмент (сульфид мышьяка As 2 S 3). В переводе с латыни название минерала означает «золотая краска»: он использовался как желтый краситель. В 11 в. алхимики различали три «разновидности» мышьяка: так называемый белый мышьяк (оксид As 2 O 3), желтый мышьяк (сульфид As 2 S 3) и красный мышьяк (сульфид As 4 S 4). Белый мышьяк получался при возгонке примесей мышьяка при обжиге медных руд, содержащих этот элемент. Конденсируясь из газовой фазы, оксид мышьяка оседал в виде белого налета. Белый мышьяк использовали с древних времен для уничтожения вредителей.

В 13 в. Альберт фон Больштедт (Альберт Великий) получил металлоподобное вещество, нагревая желтый мышьяк с мылом; возможно, это был первый образец мышьяка в виде простого вещества, полученный искусственно. Но это вещество нарушало мистическую «связь» семи известных металлов с семью планетами; вероятно, поэтому алхимики считали мышьяк «незаконнорожденным металлом». В то же время они обнаружили его свойство придавать меди белый цвет, что дало повод называть его «средством, отбеливающим Венеру (то есть медь)».

Мышьяк был однозначно идентифицирован как индивидуальное вещество в середине 17 в., когда немецкий аптекарь Иоганн Шрёдер получил его в сравнительно чистом виде восстановлением оксида древесным углем. Позднее французский химик и врач Никола Лемери получил мышьяк, нагревая смесь его оксида с мылом и поташом. В 18 в. мышьяк уже был хорошо известен как необычный «полуметалл». В 1775 шведский химик К.В.Шееле получил мышьяковую кислоту и газообразный мышьяковистый водород, а в 1789 А.Л.Лавуазье, наконец, признал мышьяк самостоятельным химическим элементом. В 19 в. были открыты органические соединения, содержащие мышьяк.

Получение мышьяка . Мышьяк получают, в основном, как побочный продукт переработки медных, свинцовых, цинковых и кобальтовых руд, а также при добыче золота. Некоторые полиметаллические руды содержат до 12% мышьяка. При нагревании таких руд до 650-700° С в отсутствие воздуха мышьяк возгоняется, а при нагревании на воздухе образуется летучий оксид As 2 O 3 - «белый мышьяк». Его конденсируют и нагревают с углем, при этом происходит восстановление мышьяка. Получение мышьяка - вредное производство. Раньше, когда слово «экология» было известно лишь узким специалистам, «белый мышьяк» выпускали в атмосферу, и он оседал на соседних полях и лесах. В отходящих газах мышьяковых заводов содержится от 20 до 250 мг/м 3 As 2 O 3 , тогда как обычно в воздухе содержится примерно 0,00001мг/м 3 . Среднесуточной допустимой концентрацией мышьяка в воздухе считают всего 0,003 мг/м 3 . Парадоксально, но и сейчас намного сильнее загрязняют окружающую среду мышьяком не заводы по его производству, а предприятия цветной металлургии и электростанции, сжигающие каменный уголь. В донных осадках вблизи медеплавильных заводов содержится огромное количество мышьяка - до 10 г/кг. Мышьяк может попасть в почву и с фосфорными удобрениями.

И еще один парадокс: получают мышьяка больше, чем его требуется; это довольно редкий случай. В Швеции «ненужный» мышьяк вынуждены были даже захоранивать в железобетонных контейнерах в глубоких заброшенных шахтах.

Мышьяк - химический элемент 5-группы 4-го периода таблицы Менделеева с атомным номером 33. Является хрупким полуметаллом стальной окраски с зеленоватым оттенком. Сегодня мы с вами подробнее рассмотрим, что такое мышьяк, и познакомимся с основными свойствами это элемента.

Общая характеристика

Уникальность мышьяка заключается в том, что он встречается буквально везде - в горных породах, воде, минералах, почве, растительном и животном мире. Поэтому его часто называют не иначе как вездесущий элемент. Мышьяк беспрепятственно распределяется по всем географическим регионам планеты Земля. Причиной тому являются летучесть и растворимость его соединений.

Название элемента связано с его использованием для истребления грызунов. Латинское слово Arsenicum (формула мышьяка в периодической таблице - As) образовалось от греческого Arsen, означающего «сильный» или «мощный».

В организме среднестатистического взрослого человека содержится порядка 15 мг этого элемента. В основном он концентрируется в тонком кишечнике, печени, легких и эпителии. Всасывание вещества осуществляется желудком и кишечником. Антагонистами мышьяка выступают сера, фосфор, селен, некоторые аминокислоты, а также витамины Е и С. Сам элемент ухудшает всасывание цинка, селена, а также витаминов А, С, В9 и Е.

Как и многие другие вещества, мышьяк может быть и ядом, и лекарством, все зависит от дозы.

Среди полезных функций такого элемента, как мышьяк, можно выделить:

  1. Стимулирование усвоения азота и фосфора.
  2. Улучшение кроветворения.
  3. Взаимодействием с цистеином, белками и липоевой кислотой.
  4. Ослабление окислительных процессов.

Суточная потребность в мышьяке для взрослого человека составляет от 30 до 100 мкг.

Историческая справка

Один из этапов развития человечества носит названием «бронзовый», так как в этот период люди сменили каменное оружие на бронзовое. Данный металл представляет собой сплав олова с медью. Однажды при выплавке бронзы мастера случайно использовали вместо медной руды продукты выветривания медно-мышьякового сульфидного минерала. Полученный сплав легко отливался и отлично ковался. В те времена никто еще не знал, что такое мышьяк, но залежи его минералов намеренно искали для производства качественной бронзы. Со временем от этой технологии отказались, очевидно, из-за того, что при ее использовании часто возникали отравления.

В Древнем Китае пользовались твердым минералом под названием реальгар (As 4 S 4). Его применяли для резьбы по камню. Так как под воздействием температуры и света реальгар превращался в другое вещество - As 2 S 3 , от него также вскоре отказались.

В 1 веке до нашей эры, римский ученый Плиний Старший вместе с ботаником и врачом Диоскоридом описывали минерал мышьяка под названием аурипигмент. Его название переводится с латыни как «золотая краска». Вещество применяли как желтый краситель.

В средневековье алхимики классифицировали три формы элемента: желтую (сульфид As 2 S 3), красную (сульфид As 4 S 4) и белую (оксид As 2 О 3). В 13 веке при нагреве желтого мышьяка с мылом алхимики получали металлоподобное вещество. Вероятнее всего, оно было первым образцом чистого элемента, полученного искусственным образом.

Что такое мышьяк в чистом виде, узнали в начале 17 века. Произошло это, когда Иоганн Шредер, восстанавливая древесным углем оксид, выделил этот элемент. Спустя несколько лет французскому химику Никола Лемери удалось получить вещество путем нагрева его оксида в смеси с мылом и поташом. В следующем веке мышьяк был уже хорошо известен в статусе полуметалла.

Химические свойства

В периодической системе Менделеева химический элемент мышьяк расположен в пятой группе и причислен к семейству азота. В естественных условиях он представлен единственным стабильным нуклидом. Искусственным путем получают более десяти радиоактивных изотопов вещества. Диапазон значений периода полураспада у них довольно широкий - от 2-3 минут до нескольких месяцев.

Хоть мышьяк иногда и нарекают металлом, он скорее относится к неметаллам. В соединении с кислотами он не образует солей, однако является сам по себе кислотообразующим веществом. Именно поэтому элемент идентифицируют как полуметалл.

Мышьяк, как и фосфор, может находиться в различных аллотропных конфигурациях. Одна из них - серый мышьяк, представляет собой хрупкое вещество, которое на изломе имеет металлический блеск. Электропроводность данного полуметалла в 17 раз ниже, чем у меди, но в 3,6 выше, чем у ртути. С повышением температуры она уменьшается, что характерно для типичных металлов.

При быстром охлаждении мышьяковых паров до температуры жидкого азота (-196 °С) можно получить мягкое вещество желтоватого цвета, напоминающее желтый фосфор. При нагревании и воздействии ультрафиолета желтый мышьяк моментально превращается в серый. Реакция сопровождается выделением тепла. Когда пары конденсируются в инертной атмосфере, образуется еще одна форма вещества - аморфная. Если осадить пары мышьяка, на стекле появляется зеркальная пленка.

Внешняя электронная оболочка данного вещества имеет такое же строение, как фосфор и азот. Как и фосфор, мышьяк образует три ковалентные связи. При сухом воздухе он имеет устойчивую форму, а с повышением влажности - тускнеет и покрывается черной оксидной пленкой. При воспламенении пары вещества горят голубым пламенем.

Так как мышьяк инертен, на него не воздействуют вода, щелочи и кислоты, которые не обладают окислительными свойствами. При контакте вещества с разбавленной азотной кислотой образуется ортомышьяковистая кислота, а с концентрированной - ортомышьяковая. Также мышьяк реагирует с серой, образуя сульфиды разного состава.

Нахождение в природе

В природных условиях такой химический элемент, как мышьяк, часто встречается в соединениях с медью, никелем, кобальтом и железом.

Состав минералов, которые образует вещество, обусловлен его полуметаллическими свойствами. На сегодняшний день известно более 200 минералов этого элемента. Так как мышьяк может находиться в отрицательной и положительной степенях окисления, он легко взаимодействует со многими другими веществами. При положительном окислении мышьяка он выполняет функции металла (в сульфидах), а при отрицательном - неметалла (в арсенидах). Содержащие этот элемент минералы имеют довольно сложный состав. В кристаллической решетке полуметалл может заменять атомы серы, сурьмы и металлов.

Многие соединения металлов с мышьяком с точки зрения состава скорее относятся не к арсенидам, а к интерметаллическим соединениям. Некоторые из них отличаются переменным содержанием главного элемента. В арсенидах одновременно могут присутствовать сразу несколько металлов, атомы которых при близком радиусе ионов могут замещать друг друга. Все минералы, которые причисляют к арсенидам, наделены металлическим блеском, непрозрачны, тяжелы и прочны. Среди естественных арсенидов (всего их около 25) можно отметить следующие минералы: скуттерудит, раммельсбрергит, никелин, леллингрит, клиносаффлорит и прочие.

Интересными с точки зрения химии являются те минералы, в которых мышьяк присутствует одновременно с серой и играет роль металла. Они имеют очень сложное строение.

Природные соли мышьяковой кислоты (арсенаты) могут иметь разную окраску: эритрит - кобальтовую; симплезит, аннабергит и скорид - зеленую, а рузвельтит, кеттигит и гернесит - бесцветную.

По своим химическим свойствам мышьяк достаточно инертен, поэтому его можно встретить в самородном состоянии в виде сросшихся кубиков и иголочек. Содержание примесей в самородке не превышает 15 %.

В почве содержание мышьяка колеблется в приделах 0,1-40 мг/кг. В районах вулканов и местах, где залегает мышьяковая руда, этот показатель может доходить до 8 г/кг. Растения в таких местах гибнут, а животные болеют. Подобная проблема характерна для степей и пустынь, где не происходит вымывание элемента из почвы. Обогащенными считаются глинистые породы, так как в них содержание мышьяковистых веществ вчетверо больше, чем в обычных.

Когда чистое вещество в процессе биометилирования превращается в летучее соединение, оно может выноситься из почвы не только водой, но и ветром. В обычных районах концентрация мышьяка в воздухе составляет в среднем 0,01 мкг/м 3 . В промышленных же районах, где работают заводы и электростанции, этот показатель может достигать и 1 мкг/м 3 .

Умеренное количество мышьяковистых веществ может содержаться в составе минеральной воды. В лечебных минеральных водах, согласно общепринятым нормативам, концентрация мышьяка не должна превышать 70 мкг/л. Здесь стоит отметить, что даже при более высоких показателях отравление может произойти только при регулярном употреблении такой воды.

В природных водах элемент может находиться в различных формах и соединениях. Трехвалентный мышьяк, к примеру, гораздо токсичнее, чем пятивалентный.

Получение мышьяка

Элемент получают как побочный продукт переработки свинцовых, цинковых, медных и кобальтовых руд, а также во время добывания золота. В составе некоторых полиметаллических руд содержание мышьяка может доходить до 12 %. При их нагревании до 700 °С происходит сублимация - переход вещества из твердого состояния в газообразное, минуя жидкое. Важным условием для осуществления этого процесса является отсутствие воздуха. При нагревании мышьяковых руд на воздухе образуется летучий оксид, получивший название «белый мышьяк». Подвергнув его конденсации с углем, восстанавливают чистый мышьяк.

Формула получения элемента выглядит следующим образом:

  • 2As 2 S 3 +9O 2 =6SO 2 +2As 2 O 3 ;
  • As 2 O 3 +3C=2As+3CO.

Добыча мышьяка относится к опасным производствам. Парадоксальным является тот факт, что наибольшее загрязнение окружающей среды этим элементом происходит не вблизи предприятий, которые его производят, а около электростанций и заводов цветной металлургии.

Еще один парадокс состоит в том, что объемы получения металлического мышьяка превышают потребность в нем. В сфере добывания металлов это очень редкое явление. Излишки мышьяка приходится утилизировать путем захоронения металлических контейнеров в старые шахты.

Наибольшие залежи мышьяковых руд сосредоточены в таких странах:

  1. Медно-мышьяковые - США, Грузия, Япония, Швеция, Норвегия и государства Средней Азии.
  2. Золото-мышьяковые - Франция и США.
  3. Мышьяково-кобальтовые - Канада и Новая Зеландия.
  4. Мышьяково-оловянные - Англия и Боливия.

Определение

Лабораторное определение мышьяка производится путем осаждения желтых сульфидов из солянокислых растворов. Следы элемента определяют по методу Гутцейта или с помощью реакции Марша. В последние полвека были созданы всяческие чувствительные методики анализа, которые позволяют выявить даже совсем небольшое количество данного вещества.

Некоторые соединения мышьяка анализируют с помощью селективного гибридного метода. Он предполагает восстановление исследуемого вещества в летучий элемент арсин, который затем вымораживают в емкости, охлажденной с помощью жидкого азота. Впоследствии при медленном подогреве содержимого емкости различные арсины начинают испаряться отдельно друг от друга.

Промышленное использование

Практически 98% добываемого мышьяка не применяют в чистом виде. Широкое использование в различных отраслях промышленности получили его соединения. Ежегодно идет добыча и переработка сотен тон мышьяка. Его добавляют в подшипниковые сплавы для повышения их качества, применяют для повышения твердости кабелей и свинцовых аккумуляторов, а также используют в производстве полупроводниковых приборов вместе с германием или кремнием. И это лишь самые масштабные направления.

Как легирующая добавка мышьяк придает проводимость некоторым «классическим» полупроводникам. Его добавка к свинцу значительно увеличивает прочность металла, а к меди - текучесть, твердость и коррозионную стойкость. Мышьяк также иногда добавляют в некоторые сорта бронз, латуней, баббитов и типографических сплавов. Однако зачастую металлурги стараются все же избегать использования этого вещества, так как оно небезопасно для здоровья. Для некоторых металлов большие количества мышьяка также вредны, поскольку они ухудшают свойства исходного материала.

Оксид мышьяка нашел применение в стекловарении в качестве осветлителя стекла. В этом направлении его использовали еще древние стеклодувы. Мышьяковистые соединения являются сильным антисептическим средством, поэтому с их помощью консервируют меха, чучела и шкуры, а также создают необрастающие краски для водного транспорта и пропитки для древесины.

Благодаря биологической активности некоторых производных мышьяка, вещество используется в производстве стимуляторов роста растений, а также лекарственных препаратов, в том числе противоглистных средств для скота. Средства, содержащие данный элемент, применяют для борьбы с сорняками, грызунами и насекомых. Раньше, когда люди не задумывались, о том, можно ли мышьяк использовать для производства продуктов питания, в сельском хозяйстве элемент имел более широкое применение. Однако после выявления его ядовитых свойств веществу пришлось искать замену.

Важными областями применения данного элемента являются: производство микросхем, волоконной оптики, полупроводников, пленочной электроники, а также выращивание микрокристаллов для лазеров. Для этих целей используют газообразные арсины. А изготовление лазеров, диодов и транзисторов не обходится без арсенидов галлия и индия.

Медицина

В тканях и органах человека элемент представлен главным образом в белковой фракции, в меньше мере - в кислоторастворимой. Он участвует в брожении, гликолизе и окислительно-восстановительных реакциях, а также обеспечивает распад сложных углеводов. В биохимии соединения данного вещества используются в качестве специфических ферментных ингибиторов, которые необходимы для изучения метаболических реакций. Мышьяк необходим человеческому организму как микроэлемент.

Применение элемента в медицине менее обширное, нежели в производстве. Его микроскопические дозы используются для диагностики всяческих заболеваний и патологий, а также лечения стоматологических болезней.

В стоматологии мышьяк применяет для удаления пульпы. Небольшая порция пасты содержащей мышьяковистую кислоту, буквально за сутки обеспечивает отмирание зуба. Благодаря ее действию, удаление пульпы проходит безболезненно и беспрепятственно.

Широкое применение мышьяк получил также в лечении легких форм лейкоза. Он позволяет снизить или даже подавить патологическое формирование лейкоцитов, а также простимулировать красное кроветворение и выделение эритроцитов.

Мышьяк как яд

Все соединения данного элемента являются ядовитыми. Острое отравление мышьяком приводит к болям в животе, диареи, тошноте и угнетению центральной нервной системы. Симптоматика интоксикации этим веществом напоминает симптоматику холеры. Поэтому ранее в судебной практике часто встречались случаи умышленного отравления мышьяком. В криминальных целях элемент наиболее часто использовался в виде триоксида.

Симптомы интоксикации

На первых порах отравление мышьяком проявляется металлическим вкусом во рту, рвотой и болями в животе. Если не принять меры, могут начаться судороги и даже паралич. В самом худшем случае отравление может привести к летальному исходу.

Причиной отравления могут стать:

  1. Вдыхание пыли, содержащей мышьяковистые соединения. Происходит, как правило, на заводах по получению мышьяка, на которых не соблюдаются правила охраны труда.
  2. Употребление отравленной пищи или воды.
  3. Применение некоторых лекарственных средств.

Первая помощь

Наиболее общедоступным и известным противоядием в случае интоксикации мышьяком является молоко. Содержащийся в нем белок казеин образует с ядовитым веществом нерастворимые соединения, которые не могут всасываться в кровь.

В случае острого отравления для быстрой помощи пострадавшему ему нужно сделать промывание желудка. В больничных условиях проводят также гемодиализ, нацеленный на очистку почек. Из лекарственных препаратов применяют универсальный антидот - "Унитиол". Дополнительно могут быть использованы вещества-антагонисты: селен, цинк, сера и фосфор. В дальнейшем больному в обязательном порядке назначают комплекс из аминокислот и витаминов.

Дефицит мышьяка

Отвечая на вопрос: «Что такое мышьяк?», стоит отметить, что в небольших количествах он необходим человеческому организму. Элемент считается иммунотоксичным, условно эссенциальным. Он принимает участие практически во всех важнейших биохимических процессах человеческого организма. На дефицит этого вещества могут указывать такие признаки: снижение в крови концентрации триглицеридов, ухудшения в развитии и росте организма.

Как правило, при отсутствии серьезных проблем со здоровьем о недостатке мышьяка в рационе переживать не приходится, так как элемент содержится едва ли не во всех продуктах растительного и животного происхождения. Этим веществом особенно богаты морепродукты, злаки, виноградное вино, соки, и питьевая вода. В течение суток из организма выводится 34% потребляемого мышьяка.

При анемии вещество принимают для повышения аппетита, а при отравлении селеном он выступает действенным противоядием.

Соединения мышьяка (англ. и франц. Arsenic, нем. Arsen) известны очень давно. В III - II тысячелетиях до н. э. уже умели получать сплавы меди с 4 - 5% мышьяка. У ученика Аристотеля, Теофраста (IV - III в. до н. э.) встречающийся в природе красный сульфид мышьяка именуется реальгаром; Плиний называет желтый сернистый мышьяк Аs 2 S 3 аурипигментом (Auripigmentum) - окрашенный в золотистый цвет, а позднее он получил название орпимент (orpiment). Древнегреческое слово арсеникон, а также сандарак относятся главным образом к сернистым соединениям. В I в. Диоскорид описал обжигание аурипигмента и образующийся при этом продукт - белый мышьяк (Аs 2 O 3). В алхимический период развития химии считалось неоспоримым, что арсеник (Arsenik) имеет сернистую природу, а так как сера (Sulphur) почиталась "отцом металлов", то и арсенику приписывали мужские свойства. Неизвестно, когда именно впервые был получен металлический мышьяк. Обычно это открытие приписывается Альберту великому (ХIII в.). Окрашивание меди при добавках мышьяка в белый серебристый цвет алхимики рассматривали как превращение меди в серебро и приписывали такую "трансмутацию" могущественной силе мышьяка. В средние века и в первые столетия нового времени стали известны ядовитые свойства мышьяка. Впрочем, еще Диоскорид (Iв.) рекомендовал больным астмой вдыхание паров продукта, получаемого при нагревании реальгара со смолой. Парацельс уже широко применял белый мышьяк и другие соединения мышьяка для лечения. Химики и горняки ХV - ХVII в. знали о способности мышьяка сублимироваться и образовывать парообразные продукты со специфическим запахом и ядовитыми свойствами.Василий Валентин упоминает о хорошо известном металлургам ХVI в. доменном дыме (Huttenrauch) и его специфическом запахе. Греческое (и латинское) название мышьяка, относившееся к сульфидам мышьяка, происходит от греческого мужской. Имеются и другие объяснения про исхождения этого названия, например от арабского arsa paki, означавшего "глубоко в тело проникающий несчастный яд"; вероятно, арабы заимствовали это название от греков. Русское название мышьяк известно с давних пор. В литературе оно появилось со времен Ломоносова, который считал мышьяк полуметаллом. Наряду с этим названием в ХМVIII в. употреблялось слово арсеник, а мышьяком называли As 2 O 3 . Захаров (1810) предлагал название мышьяковик, но оно не привилось. Слово мышьяк, вероятно, заимствовано русскими ремесленниками у тюркских народов. На азербайджанском, узбекском, фарсидском и других восточных языках мышьяк назывался маргумуш (мар - убить, муш - мышь); русское мышьяк, вероятно, искаженное мышь-яд, или мышь-ядь.